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Logarithmic Corrections and Finite-Size Scaling in the
Two-Dimensional 4-State Potts Model
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We analyze the scaling and finite-size-scaling behavior of the two-dimensional
4-state Potts model. We find new multiplicative logarithmic corrections for
the susceptibility, in addition to the already known ones for the specific heat.
We also find additive logarithmic corrections to scaling, some of which are
universal. We have checked the theoretical predictions at criticality and off criti-
cality by means of high-precision Monte Carlo data.
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1. INTRODUCTION

The two-dimensional (2D) g-state ferromagnetic Potts model is one of the
most intensively studied systems in statistical mechanics. Although this
model is very simple to formulate, it has a rich phase diagram. Baxter'"
showed that for ¢ <4 this model undergoes a second-order phase transition
at the self-dual point, while for ¢ >4 the transition is of first order.

The borderline case g=4 is the most difficult: here the transition
is second-order, but the leading power-law scaling behavior is modified
by multiplicative logarithms, as was first observed by Nauenberg and
Scalapino'®? and Cardy, Nauenberg and Scalapino.”? These authors
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studied an extended Potts model (the dilute Potts model'®’) in which, in
addition to the usual ¢ spin states, vacancies are allowed. The density of
the vacancies is governed by a fugacity (“dilution field”). For each ¢ <4,
one finds the following phase diagram for low vacancy fugacity, there is an
ordinary critical point belonging to the universality class of the pure Potts
model; for high vacancy fugacity, there is a first-order transition at which
the energy, the magnetization and the vacancy density are all discon-
tinuous; these two transition curves meet at a tricritical point. In the
renormalization-group (RG) framework, there is for each g<4 an
ordinary critical fixed point, a tricritical fixed point, and a discontinuity
fixed point (governing the first-order transition). At ¢ =4, the critical and
tricritical fixed points merge, and the dilution field becomes marginal: this
is the cause of the multiplicative logarithmic corrections. For ¢ >4, only
the discontinuity fixed point survives.

The quantitative analysis of Cardy et al.*>?* is based on studying the
RG flow for the g-state dilute Potts model, as a function of the continuous
parameter ¢, in a neighborhood of ¢ =4. First, by using a nonlinear trans-
formation to appropriate scaling fields, they obtain the RG equations in
Poincaré normal form through second order in the scaling fields and first
order in € =g — 4. Next they fix the free parameters in this normal form by
matching the RG predictions to leading order in e with the exactly known
results for the critical exponents when ¢ <4'°® and for the latent heat
when ¢>4.'"? Finally, by integrating the RG equations at ¢=4 with
suitable boundary conditions, they obtain predictions for the leading-order
critical behavior of: a) the specific heat, the correlation length, and the
magnetization as functions of the thermal field at zero ordering field; b) the
critical magnetization as a function of the ordering field; and c) the critical
two-point correlator as a function of the distance between the two points.
In all these cases, the power-law dependence expected generically for a
second-order phase transition is modified by multiplicative logarithmic
corrections.

In this paper we show that by extending the analysis of Cardy et al.
through third order in the fields, we can obtain not only the leading critical
behavior but also the universal leading corrections to scaling: these are
additive terms of the generic form log log/log, with universal amplitudes
that we can compute exactly. In addition, there are nonuniversal subleading
correction-to-scaling terms of order 1/log. A similar behavior arises in

* At that time that refs. 2 and 3 were written, the exact formulae for the critical exponents
were only conjectured. They have now been confirmed by both Coulomb-gas and conformal-
field-theory methods: see Appendix A.1 for a brief review.
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other models with marginally irrelevant operators, such as the four-dimen-
sional ¢* (or Ising) model,*'? the three-dimensional tricritical ¢° (or
spin-1 Ising) model,"'"’ and the three-dimensional ferromagnet with strong
dipolar interactions.(!>'*

A second goal of this paper is to extend the renormalization-group
analysis of Cardy et al. to obtain the finite-size-scaling (FSS) behavior, as
well as the leading corrections to finite-size scaling, for the 4-state Potts
model in a periodic L x L box. Finite-size scaling''*"'® plays an important
role in the analysis of Monte Carlo simulations, which of course deal with
finite systems and must thus be extrapolated to the infinite-volume limit.
This extrapolation!'”'* is a very delicate procedure, and the corrections to
finite-size scaling induce systematic errors in the extrapolation.

For g <4 the FSS behavior of the Potts model is well understood. The
critical singularities are rounded-off: at finite volume, the specific heat
(resp. the susceptibility) has a peak of height ~L*" (resp. L"), and this
peak is shifted from the critical point by an amount of order L~'"". The
corrections to this leading behavior are suppressed by a factor L™, where
w is a correction-to-scaling exponent.

For ¢ >4 the FSS behavior is that appropriate to a first-order phase
transition: the height of the peak in the specific heat scales as ~ L, and the
shift as ~ L~ where d is the dimensionality of the lattice. The corrections
are of order L° and L~ 29 respectively. This behavior has been proven
rigorously for g>1 by Borgs, Kotecky and Miracle-Solé,'***? and has
been confirmed numerically by Billoire et al.*® for g = 20.

For g =4 the FSS behavior is more complicated, but it can be obtained
by a relatively trivial extension of the infinite-volume RG analysis. Not sur-
prisingly, we find multiplicative logarithmic corrections to the leading
power-law behavior (some of which have been found previously**); in
addition, we find additive corrections of orders log log L/log L and 1/log L.
In all cases we try to distinguish which corrections are universal and which
are nonuniversal.

We remark that the FSS behavior of the eigenvalues of the transfer
matrix in an L x co strip is also known:(?> 2% there are additive logarithmic
corrections to scaling due to the marginal dilution field.

The third goal of this paper is to test the predicted finite-size-scaling
behavior for the 4-state Potts model by means of a high-precision Monte
Carlo simulation using a Swendsen—Wang-type algorithm. We find that
our Monte Carlo data are consistent with theory if we include both the
predicted multiplicative logarithms and the additive logarithmic correc-
tions. However, it would have been impossible to deduce the theory from
these data, which are also consistent with other functional forms. In par-
ticular, we are unable to observe numerically in an unequivocal way the
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correct powers on the multiplicative logarithms or the correct universal
amplitudes on the additive loglog L/log L corrections: these features are
obscured by the presence of the nonuniversal 1/log L corrections.

The plan of this paper is as follows: In Section 2 we carry out the RG
analysis for the 4-state Potts model in infinite volume, with emphasis on
the multiplicative logarithms and on the universal additive logarithmic
corrections. In Section 3 we extend this analysis to determine the finite-size-
scaling behavior and the leading corrections to it. In Section 4 we describe
our Monte Carlo simulations. In Section 5 we compare our numerical data,
both on and off criticality, to the RG predictions. In Section 6 we report
briefly our data on the dynamic critical behavior of our Swendsen—Wang-
type algorithm. In the Appendix we show how the Cardy ef al. RG analysis
for g~ 4 can be extended to cubic order in the fields, yielding the universal
third-order term in the RG flow for the dilution field.

2. SCALING EQUATIONS IN INFINITE VOLUME

2.1. Renormalization-Group Flow

It is well known'**?* that the scaling behavior of the two-dimen-
sional 4-state Potts model has logarithmic corrections. This is due to the
presence in this model of a marginal operator, which is absent in any other
two-dimensional Potts model.

Cardy, Nauenberg and Scalapino'®® described the renormalization-
group flow for the g-state dilute Potts model by using three scaling fields:
a thermal field ¢, an ordering field A, and a dilution field y.* The pure
Potts model corresponds to a large negative value of the dilution field.
Near criticality, the thermal field is proportional to the temperature devia-
tion from criticality (¢ ~J,.—J). The fields ¢ and h are relevant, and the
field ¢ is marginal when ¢ =4. The critical point is found at ¢ =A=0. In
the larger space (q, ¢, 4, ), the point g =4, ¢ =h =1 =0 is a multicritical
point, at which a curve of critical points [¢ <4, ¢ =h=0, ~ —(4—q)"?]
meets a curve of tricritical points [g<4,¢=h=0, y ~ +(4 —q)'?].

Cardy et al. found that the renormalization-group equations for g =4
under an infinitesimal change of scale dl, keeping terms through second
order in the fields, are

4 Of course, in addition to these three fields there will be an infinite number of irrelevant
scaling fields. But these will produce corrections to scaling that are suppressed by powers of
the length scale, hence are negligible compared to the logarithmic corrections arising from
the marginal operator .
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.‘ﬁ/:i#w.pu)z (2.1a)
W Ly s by 801 (21b)
#: [y + ()] (D) (2.1¢)
where
Yr=3, pum g a=r b= o= (22)

The solution of these equations is:

¥(0)
l//(l)=_——l—~a¢(0)1 (2.3a)
3 ¢(0) e3//2
¢(/) ~d—a 0 ) (2.3b)
1/8
a(l) _i()_)L (2.3¢)

S (1—ap(0) '

where / is the logarithm of the length-rescaling factor. From (2.3b, ¢} it is
clear that the thermal and ordering fields are relevant (i.e., they grow
exponentially as /— oo). The dilution field  is marginally irrelevant when
¥(0) <0, in the sense that (/) - 0 as / - oo but at a subexponential rate.
This induces multiplicative logarithmic corrections (i.e., powers of /) in ¢
and 4; only when (0) =0 do we have a pure power-law (i.e., exponential-
of-/) behavior for the two relevant fields. This latter behavior occurs in the
Baxter-Wu model,®”’ which is believed to be in the same universality class
as the 4-state Potts model but does not exhibit any multiplicative
logarithmic correction. We shall henceforth assume without comment that
¥(0) <.

The equations (2.1} are the Poincaré normal form of the RG flow at
g =4, taking into account terms through second order in the fields.”* The
analysis of these equations yields the correct leading terms (power and
multiplicative logarithm) for all the critical observables (correlation length,
specific heat, etc.). However, we should include more terms in order to be
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able to analyze the corrections to scaling to these quantities. Equation
(2.1a) should be replaced by

ay(l
WD R =apty +ay(y + - (24)
where ¢’ is some constant, and the dots --. stand for higher powers of

(1). Note that the ratio @’'/a® is universal, in the sense that it cannot be
altered by any smooth change of variable; the coefficients of order y* and
higher, by contrast, can be set to any desired values (e.g. zero) by a smooth
change of variable y — \ + o, % + ;> + - ... The solution of (2.4) has the
following asymptotic behavior for large /:

_ [y eleel o
tlf(l)——al[1+a2 +0<l>} (2.5)

Note that the log /// correction term here is universal: it does not depend
on (0) or on the parametrization of {. By contrast, the 1// corrections are
nonuniversal, as their value depends explicitly on y(0). The terms of order
y* and higher in (2.4), even if present, affect only the 1// corrections.

The effect of the term @'¥(/)* in (2.4) on the solutions of (2.1b, ¢) can
be computed easily. Let us define the function £, 4(/; ¥(0)) to be the ratio
6(1)/6(0) when solving the generic equation

§=[A+Bad/(l)] a(l) (2.6)

where y({) is the exact solution of (2.4) with the specified initial value y/(0).
Namely, the function f, ; is given by the integral

Fuontts o) =exp ([ L4+ Bapir 1 ar (27a)
_ W) ay
—exp <L,'0) [A+ Bay'] —F(l//,)> (2.7b)

The asymptotic behavior of f, , for large / is

fA‘B<1;¢(0))=eA'<—m//(0)1)*”{1+Z—;l°—g’+0<%>]3 (28)
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Thus, the solutions (2.3b, ¢) are replaced by
() =¢(0) f12. 345 ¥(0))

(0) 342 ! l 1 1 3/4
= T _¢a¢(§) 7 [ 1 +%%+ 0 <7>} (29a)

h(1) = h(0) fls/x, l/'lﬁ(l; ¥(0))

h(O) elSI/B a lO l 1 1/16
e Kl (299)

One must also include higher powers of (/) inside the square brackets in
(2.1b, c¢), but these terms cause only subleading corrections, multiplying
(2.9) by factors 1 + O(1/1).

The value of a' can be obtained by studying the RG flow in a
neighborhood of the multicritical point g=¢.=4, and matching the
exponents with the exactly known value'®® of the next-to-leading thermal
exponent as a function of ¢. The details of this computation are given in
Appendix A; the result is

S = 2.1
4 27 (2.10)

2.2. Correlation Length

In infinite volume one can define various different correlation lengths:
the most important of these are the exponential correlation length
( =inverse mass gap)

. —|x]
(0 = Jim
fq |x| — o lOg G(x)

(2.11)

(where x is taken to infinity along a coordinate axis) and the second-
moment correlation length

o (1%, Ix? G\
f"’=<2d . G(x) > (212)

where G(x) is the two-point correlation function and d is the spatial dimen-
sion. (We have appended a subscript oo to emphasize that these quantities
are defined in infinite volume, in order to distinguish them from the finite-
volume quantities to be introduced in the next section.) Both of these
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correlation lengths, as well as other similar ones, are expected to scale in
the same way near the critical point (but with different prefactors).

Let, therefore, ., be any one of these correlation lengths. It behaves
under a change of scale / as

£..($(0), h(0), Y(0)) =e'C..($(1), h(]), Y(1)) (2.13)

[ Henceforth we shall drop the arguments 0 on the initial values of the
fields, and simply write ¢ = ¢(0), A= h(0), y =y(0).] Substituting the solu-
tions (2.9), we get the scaling form

Eold, )= e’éw(¢f3/z. yalls W)y A 1ss 16l W), W(1)) (2.14)

where (/) is given by (2.5).
Let us now define /* =7*(¢, ) as the solution of the equation

w. v 1 if ¢>0
Bf3p2, 354! ’l//)—{_l it $<0 (2.15)

(This solution is unique when |¢| is sufficiently small.) The exact form of
I* as a function of ¢ and y cannot be obtained in closed form. However,
we can get the following asymptotic expansion for small ¢ (and fixed

¥ <0)

2 1 1 -2
I%(9.¥) = 3 1og 4]+ log(~log [8)) + 5 log (3% )
3 34\ log(—log |]) 1
(i) g Olem) @

Note that the first, second and fourth terms in (2.16) are universal, while
the third term and the O(1/log |¢|) correction are nonuniversal (they depend
on ). It follows from (2.16) that for any exponents 4, B we can write

Fua(d;0)= T4 a(I%(4,¥); %) (2.17a)

_ 2a¢ (A4/2 - B)
)

3 3a'\/4 log( —log |4])
"P"(ZJ“Z:EXTB) —Tog 14|

0] <ﬁ>] (2.17b)

~ 10124 (~log 1)
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Note that the leading power and log are universal, as is the additive correc-
tion proportional to log(—log |¢|)/log |¢|; the constant factor and the
1/log |¢| additive correction are nonuniversal.

Let us now insert /=/*(¢, ) into (2.14). using (2.16)/(2.17), and
restricting for simplicity to zero field (4 =0), the result is

3
(G0 Y)=Fy o(d:¥) &, <i1,0,m+ > (2.18a)
e (2ay >[ (g_sa'>1og<—1og|¢n
—tg1- (Blioglo1) | 1450 ) B2l
+0<—1—->]5 <+1 0—3—+.-.> (2.18b)
og191/] =\ 2aTog 9 |
. 3 log( —1
S CL I (log 1) | 14 (5 - 305 ) B oD
1
+0 <log |¢|>} (2.18¢)
where
c, E<_—§%>mél(il,0,0) (2.19)

is a nonuniversal amplitude; here the + (resp. — )} sign corresponds to the
high-temperature (resp. low-temperature) side of criticality. In the passage
from (2.18b) to (2.18c) we have assumed that £ (+1,0,0)50 and that
£ (£1,0,) is a smooth function of ¥ near  =0: together these assump-
tions imply that ¢&.(+1,0,3/(2alog|¢|)+ ---)=const+ O(1/log |$|).
Physically, this amounts to assuming that  is a non-dangerous irrelevant
variable.?* 3 We shall henceforth make this assumption without further
comment. The leading power and multiplicative logarithm in (2.18c) were
first obtained in ref. 3; the universal log( —log |¢|)/log |$| additive correc-
tion is new.
If we invert (2.18c) we get

B 3a’ loglog &, < 1 >
~ ' 372 3/4 _ —_—
¢~ +C', & (logé,) 1 42 log¢, +0 log . } (2.20)

where

Cy =(—ap) ¢, (£1,0,0)%? (2.21)
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is a nonuniversal amplitude. Again, the correction of order loglog ¢,/
log &, is universal, while the correction of order 1/log &, is nonuniversal.

To study the critical isotherm (with 42 >0) we first define the scale
** =1**(h, ) to be the solution of the equation

hfiss ine(I*™ ) =1 (2.22)

This solution is given asymptotically for small 4 by

8 1 1 —2ay
* ok - - - _1
P**(h, ) 15]ogh+3010g( logh)+30 og< T )
1 a \log(—logh) < 1 >
* <480 16a2> “togh 2 \iogh (2:23)
We can also define a function analogous to F, ,:
G p(hs )= fa s(I**(h )5 ) (2.24a)
= h 8415 —log h)1°— % < - 8‘"p>/‘/307 ?
15
1 15a'\/A4 log( —log /) ( 1 >
x[1+<16_8a2><30“3> “togh T \logh ]

(2.24b)

If we now choose /=/**(h, ) in (2.14), we get on the critical isotherm

(¢=0)

15 1
Eal0 b )= Gulhi ) €. (011, oot ) (2252)
_ 1 a \ log(—logh) < 1 )
=15 _ 1730 o _
h=" A (=log h) {1+<480 16a2> “logh 70 logh]
(2.25b)

2.3. The Free Energy and Its Derivatives

The singular piece of the free energy per unit volume behaves under a
change of scale / as

Sing(8(0), h(0), ¥(0) = e =2 finn(@(1), A1), Y(1)) (2.26)
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If we plug the solution (2.9) of the renormalization-group equations (2.1)
into (2.26), we get

fsing(¢’ h, ) =eizlf‘sing(¢f3/2, 3/4(1; ¥), hf|5/s. 1/16(1; v ()  (227)

where (/) is given by (2.5).
Let us now choose the scale /=/*(¢,) as in (2.15); using
(2.16)/(2.17), we get

3
e )= Py 050 fan (1,1 ) o+

(2.28)
where the + (resp. —) sign corresponds to the high-temperature (resp.

low-temperature) side of criticality. At zero field (4 =0) this expression can
be written as

Joing($, 0, W)= D, |4]*7 (—log |¢]) "

3 34\ log(—log I4) 1
"[“(4 2a2> “log 9] +0<1og|¢;>] (229)

where

-1
D, E< i""’) un( £1,0,0) (2.30)
is a nonuniversal amplitude. The leading power and multiplicative
logarithm in (2.29) were first obtained in ref. 2; the universal log( —log |¢])/
log |¢| additive correction is new.

If we differentiate (2.28) twice with respect to ¢, we get the specific
heat. At zero field (A =0) we get

Cu($,0,y)~ 14| 77 (—log |g]) ™'

3 34\ log(—log ||) 1
"[1‘(3_272) “Tog 14| +0<log|¢|>] (231)

The leading behavior of the specific heat was previously obtained in ref. 2.

If we differentiate (2.28) once with respect to the ordering field A,
we get the magnetization. The result at zero ordering field (2| 0) in the
low-temperature regime (¢ <0) is
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M(4,0,¥) ~F_, ol@; %) Fisg, 1,’16(¢; W) =F_is, 1/16(¢; ) (2.32a)
~(—8)""* (—log(—4))~"*

3 34\ log(—log(— 4])) I
"{“(55‘16,12) Tog(—4) +0<logl¢I>J (2:320)

If we differentiate (2.28) twice with respect to the ordering field A, we get
the susceptibility. The result at A=0 is

29,0, ¥)~F_; o(d; ¥) Fss, 1/16(¢; l//)2 =F;,, 1/8(¢§ V) (2.33a)

~ ¢l 77 (~log |$])**
9  94'\ log(—log |¢]) < 1 ):’
—=-== 0 2.33
|- () et o )] e
The leading power and multiplicative logarithms in (2.32b) were first
obtained in ref. 3. The result (2.33b) did not appear in ref. 3, but it can of
course be obtained directly from their approach. The universal log( —log |¢|)/
log |¢| additive corrections are all new.
Finally, we can write the asymptotic behavior of the specific heat, the

magnetization, and the susceptibility as functions of £ . Using (2.20) we
get

$o 3d’ loglog ¢, < 1 )]
C”~(10gém)3’2[1+202 loge, O \ioge, (2-34a)

g o loglog&., ( I ﬂ
M~<log«:w>'“6{”16a2 loge, T O\ioge, )| (234

&’ a loglog¢,, < 1 >]
XN(Ingoo)l/sl:l"-gaz log &, +0 log &, (2.34c¢)

Note that the (universal) corrections of order loglogé  /log &, are
proportional to the ratio a'/a® and to the exponent of the multiplicative
logarithm, since the other terms of the same order cancel out.

Finally, we observe that the following two relations hold:

Cped ~¢? [ 1+0 <1—Oﬁ>} (2.35a)

) 1
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Note that in these relations there are neither multiplicative logarithmic
corrections nor additive log(—log |¢|)/log |¢| corrections. It follows that
the hyperscaling laws
dv=2—a (2.36a)
dv=y+2p (2.36b)
are satisfied without logarithmic corrections.
The magnetization on the critical isotherm (¢=0,4>0) can be

calculated by first choosing the scale /=1I/**(h, /) as in (2.22). Plugging
(2.23)—(2.24) into (2.27) we get

15
fsing(oa h, lp) = G-Z, O(h, l//) f:sing <0s ]’ 8a—log—h+ e > (2373)
~hlc’;/lS(_log h)*l/ls

1 _ 4 \log(—logh) <_l_>
><[1_<240—8az> —logh +0 logh} (2.37b)

By differentiating this equation with respect to # we get the critical
magnetization:

) 1 \log(—logh) !
~ BVIS( _ Wil === T 1
M(O, h, ) ~h'"(—log ) [ <240 8a2> —log A +O<logh>]
(2.38)

The leading power and multiplicative logarithm in this result were first
obtained also in ref. 3. The universal log( —log #)/log & correction is new.

2.4. Two-Point Correlators

The authors of ref. 3 also included the following behavior for the two-
point correlation function at criticality:

1

GOx3 0,0, 9) ~ i fog ) 7

as |x|—> o (2.39)

If we assume a natural scaling law of the form

PN x|
G053 0.0 9 ¥ L iog a7 0 (cwo nm) (240)
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where F is some scaling function, then we can deduce equation (2.34c)
through the integral

x=|d* G(x) (241)

Moreover, we can deduce the relation (2.34b) by taking |x| ~ ¢, and using
the hyperscaling relation

G(|x| ~¢&.) ~, liim G(x)=M? (2.42)

3. FINITE-SIZE SCALING

In this section we analyze the finite-size-scaling behavior of the two-
dimensional 4-state Potts model on an L x L lattice with periodic boundary
conditions.

3.1. Renormalization-Group Flow in Finite Volume

To obtain the finite-size scaling of this model we only have to adjoin
a new “scaling field” L', where L is the linear size of the system. The
fixed-point value of this field obviously is L~ '=0, corresponding to the
infinite-volume limit. The behavior of this scaling field under a change of
scale is trivial: to (2.1a—) we need to adjoin the flow

dL— (1)
dl

=L"Y) (3.1)

3.2. Correlation Length

Not all of the correlation lengths employed in infinite volume have
sensible analogues in a fully finite lattice: for example, the exponential
correlation length (2.11) makes sense only if the lattice is infinite in at least
one direction. However, the second-moment correlation length (2.12) does
have a sensible extension to finite volume; this extension is, however, not
unique. One reasonable definition for a periodic lattice of linear size L is

5 (/F=1)"
&= 2 sin(n/L) (3.2)
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where y is the susceptibility (ie., the Fourier-transformed two-point
correlation function at zero momentum) and F is the corresponding quan-
tity at the smallest nonzero momentum (2n/L, 0):

XEZ G(x; L) (3.3)

F=Y e*™/LG(x; L) (3.4)

where G(x; L) is, of course, the two-point correlation function on the finite
lattice. Another definition could be

é'z(lzx(Lz/f)sinz(nxl/L)G(x;L)>'/2 L(l F>l/2 (3.5)

2 > G(x;L) A

Hereafter, £ will denote any reasonable finite-volume correlation length.
The generalization of (2.13)/(2.14) is

&g, b, LY =€&(g(1), h(D), y(I), L™'(1)) (3.6a)

I
=e/ <¢f3/2. 3/4(l§ V), hf15/8, 1/16(13 ¥), ¥(l), ez> (3.6b)

where (/) is given by (2.5). Let us now choose the scale
I=logL (3.7)
so that (3.6) becomes

o hy, L) = LE(@f )2, 3alog L ), hf 158 1p6(log L ¥), Y(log L), 1)
(3.8)

One quantity of interest is the L-dependence of the correlation length
at criticality (¢ =h =0). From (3.8) and (2.5) it is trivial to see that

&(0,0,y, L") = L&O0, 0, y(log L), 1) (3.9a)

A loglog L ( 1 ﬂ
= * 3.
L{x +1OgL+B (og L)’ +0 oz L)’ (3.9b)
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where
x*=¢&(0,0,0,1) (3.10a)
10
A= ————é(0,0, z, 1) (3.10b)
aaz z=0
B=Z4 (3.10c)
a

are all universal; the corrections of order 1/(log L)* are nonuniversal.
We can also obtain a finite-size-scaling law off criticality. For simplicity
let us restrict attention to A=0. From (3.8) we know that at zero field

&0y, L") _
404170

#f32. 34(log L; ), 0, — + 1) (3.11)

alog L

And from (2.8) we know that

¢f3/2.3/4(10gL§l//)=¢L3/2(—a¢10gL)3/4{1+a—210g10gl‘+0< 1 >]

where the O(1/log L) correction term is nonuniversal. Therefore, we obtain
the FSS law

é(¢s 05 l//, L~ l) log log L
L

_r 3/2 —3/4
=F{¢L"*( log L) )+0< log L

> (3.13)

where the function F;: is universal modulo a nonuniversal rescaling of its
argument.

The disadvantage of this approach is that the corrections to FSS are of
order log log L/log L. A better way to write the FSS law is to consider the
relation between the finite-volume and infinite-volume correlation lengths at
the same ¢, A, . Again restricting for simplicity to A =0, let us insert in (3.11)
the expression (2.20) for ¢ as a function of &, =¢& (4,0, ). The first
argument on the right-hand side of (3.11) can be written (for L, £, » 1) as

¢f3/2, 3/4(103 L;y)

_ AN <1££ v
B iEJL(L) log L

y [1 3d <log log L_log log €%> A B

4a* log L log &, logL+log£%+m

(3.14)



Finite-Size Scaling in 2D 4-State Potts Mode! 583

where £, =¢_,(+1,0,0)*? is a universal amplitude, the coefficients A4’
and B’ are nonuniversal (they depend on ), and the dots denote correc-
tions of order log log L/(log L)? and log log &, /(log &, )2 If we denote by
n=n(y) the coefficient of the nonuniversal 1// correction in the formula
(2.8) for f, g, then the values of 4’ and B’ are given by

3
A’=Zr7(l//) (3.15a)
33 1o
B_—4;7(|/;) 4logém(i1,0,0) aaxlogfq(il,o,x) » (3.15b)

If we now consider the finite-size-scaling limit ¢ — 0,  fixed, L — oo with
&, /L fixed, we get

—3/2 ' ’
s yallog L) = +E, <%) {1+A + B +3/4log(¢, /L) J

log L
(3.16)

Miraculously, the combination A’ + B’ appearing here does not depend
on . Therefore, inserting this into (3.11), we obtain

-1
9,0, L >=F5<éx(¢,o,v/)>+ﬁz<ém(¢,o,¢)> L, o)

L L L log L

where the functions F, and £ are universal (they do not contain any piece
depending on ). It is quite remarkable that not only the leading finite-
size-scaling function, but also the leading correction to it, is universal (in
amplitude as well as in shape). This is a special feature of the logarithmic
corrections to scaling induced by a marginally irrelevant operator, and is
not observed in the more common context of power-law corrections to
scaling induced by irrelevant operators.
The equation (3.17) can be formally inverted, yielding

$.(8,0,9) | (84,09, L") $(4,0,%, L-H\ 1
L *G<< L >+G<< L >1ogL+"'
(3.18)

Again both functions G. and G, are universal.

822/88,3-4-4



584 Salas and Sokal

3.3. The Free Energy and Its Derivatives
The finite-volume generalization of (2.27) is

!

e L) == (W5l W sl DU ) (319)

where (]) is given by (2.5). As in (3.7) we choose /=log L, and get

fsing(¢a h’ l//, L 71)

1
=L sing <¢f3/2‘ sa(log Ly W), f 155, 116 (108 L ), 2 fog L + oy 1)
(3.20)

The finite-size behavior near criticality of the specific heat, magnetization,

and susceptibility can be obtained by performing the appropriate

derivatives with respect to ¢ or A. For simplicity let us restrict attention to
zero field, where we get®

L 3d' loglog L k¢

Cy(¢, 0y, L Y=——— o et

u($,0,¥ ) (—ay log L)m[ 2a> logL logL ]

O3f.. 1
% fs12ng<x,0’_ +...,]>'
Ox alog L X =y, yallog Li )
(3.21)

> We refrain from writing also

M($,0,y, L") =

L~'# + a loglogL ky .
(—ay log L)1 16¢2 logL " logl =

afsing . 1
x dy <¢f3/2.3/4(|0g L;y), y, alogL+ . l>

r=10

because the finite-volume magnetization of course vanishes at h=0, for all ¢ (by virtue of
the Potts symmetry). This scaling is indeed valid, but the prefactor (f;n,/0h) (¢, h, ¥, 1)
vanishes at h=0.

The scaling £~ "%log L)~"'® at criticality applies not to the usual magnetization
M=L"3 4>, but rather to the “absolute magnetization” Af=L~%¢(|.#|)>. These two
quantities are essentially identical in the low-temperature phase (4|0 at fixed ¢ <0), but are
very different in the critical regime. Unfortunately, much of the literature (especially numeri-
cal work) has sloughed over the distinction between M and #7.
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LA a loglogL k
0 L*l R o Tere X “e.
X(¢5 > l//7 ) ( —alj/ log IJ)I/8 [ 8(12 log L * IOg L * :|

azfsing

X
oy?

1
<¢f}4/2.3/4(10gl‘; l/’)’ s —alogL+ e, 1>

=0

(3.22)

For future convenience, we have denoted by k, the coefficient of the
nonuntversal 1/log L correction term within the square brackets, which
arises from the nonuniversal 1// term in (2.8). In addition to the two
correction terms within the square brackets, we have (through order
1/log L) three other corrections arising from the factors involving £, :
a universal 1/log L term arising from the derivative of the relevant scaling
function with respect to  at ¥ =0; and a universal loglog L/log L term
plus a nonuniversal 1/log L term, both arising from the fact that the first
argument of f;,. is not exactly proportional to ¢L**(log L) **, but is
rather given by (3.12). The simplest case is at criticality (¢ =0): then the
second and third terms vanish, and the first one gets amalgamated with the

nonuniversal terms &, /log L. We thus get

- L 3d' loglog L k¢
C0,0,0, L Y |42 0808 Py .
0,0y, ) (logL)”[ oz log L logL+ ] (3:23)
L a loglogL k|
L DY — . St S B S TR .
9,0, 4, ) (logL)”s[ +8a2 log L logL+ ] (3.24)

where k', and k' are nonuniversal.

In conclusion, all the observables which are computed through
derivatives of the free energy have at criticality a multiplicative logarithmic
piece, proportional to some power of log L. They also have additive correc-
tions of order log log L/log L, the coefficient of which is —a'/a? times the
exponent of the multiplicative logarithm. These corrections arise together
from the fact that with each derivative we gain a factor £, z(log L; ¢). On
the other hand, the 1/log L corrections in (3.23)/(3.24) are nonuniversal
because the corresponding terms in f, g(log L; ¥) are nonuniversal. Both
the multiplicative logarithm and the additive loglog L/log L term are
absent in the correlation length (3.9). The leading power and multiplicative
logarithm in (3.23) were obtained previously in ref. 24. It is noteworthy
to remark that in some of the literature it was (wrongly!) assumed that
the leading term for the susceptibility had no such logarithmic correc-
tions.?2 3¢
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Off criticality, we get FSS laws

B L | -4 l_gg_k)g_l‘ﬂ
Chld, 0,4, L")~ o 07 LF("'(¢L3/2(¢ log L)=""*) + 0< log L
(3.25)
_ L 1. 32 —3/4 M
2(6,0,4, L l)~w_F1(¢L (Y log L) )+0< log L >J
(3.26)

The disadvantage of (3.25)/(3.26) is that the corrections to FSS are of
order log log L/log L. A better way to write the FSS last is to use & /L as
the argument of the scaling function. Using the relation (3.16), we get

' k..
Corld, 0,0, L") ~—= [ i"_log‘i’q#j“,]

(log L)*? 2 logl logL
$(9, 0, 4) Sl 0, ¥)\ 1
[ (S800)  p (Bt00N 1
(3.27)

7/4

B L
X(¢;Os ‘!/,L l)~W|:l

a loglogL Kk,
+8a2 log L +logL+m

) [ r, <éw(¢LO, D)y p, (Ect8.00) L ]

(3.28)

where the scaling functions F, and F, are universal and can be expressed
in terms of derivatives of f;,,. Thus, the nonuniversal terms k,/log L
appear only in the prefactor in square brackets. There is of course, also a
nonuniversal prefactor multiplying everything.
Finally, we can re-express ¢, /L as a function of &(¢, L)/L=
&(9, 0, , L")/, using (3.18), and get
. L 3¢’ loglog L k¢,
Culd 0,9, L )~(logL)3/2[ o logl logL ]

x [ Ge, <€(¢L,L)> +6., <é(¢iL)> lo; -~ } (3.29)
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L' a loglogL k

O, 0, L~ ——— — L e X 4.
14,0,y ) (log L)'/S[ 322 log L logL+ }

x|:GX< ¢L>+G (é(‘pLL)lO;L ---](3.30)

The scaling functions G, and G, are universal.

If we study the ratio C,(¢, 0, ¢, L=")/C1(0,0,y, L™"), we can see
easily from (3.29) that the prefactor in square brackets cancels out, and we
have

Culd 00 Lo <M>+Gm (M) L (331)

C,(0,0,y, L~! L “u\ L JlogL

where both scaling functions are wuniversal. Therefore, both the universal
log log L/log L corrections and the nonuniversal 1/log L corrections to the
specific heat Cp(4, 0, ¥, L") come from its value at criticality. Similar
reasoning applies to the susceptibility.

4. DESCRIPTION OF THE SIMULATIONS

4.1. The Monte Carlo Algorithm

The Monte Carlo (MC) algorithm we used in our simulations was
actually an algorithm©* 3% to simulate the Ashkin-Teller (AT) model.?5- 36
This model is a generalization of the Ising model to a four-state model, and
it includes as a particular case the 4-state Potts model. The general AT
model assigns to each lattice site x two Ising spins ¢, = +1 and .= +1,
and they interact through the Hamiltonian

Hyr=-J Y o0,-J Y 1.7,—K Y o.1.0,1, (4.1)
<o <> <o

where the sums run over nearest-neighbor pairs (xy>. The line J=J' =K
is the 4-state Potts model with f=4J:

Hpgs=—J ) (0.0,+1.7,4+0,7.0,7,)
<xy>

=—4J Y 0, ., 0. . +const (42)

{xyd

The critical point of the square-lattice 4-state Potts model lies at
J=J =K=1log 3. The plane K=0 of the general AT model corresponds
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to two non-interacting Ising models with nearest-neighbor constants J
and J', respectively.

Wiseman and Domany®® proposed an algorithm of Swendsen-Wang
(SW) type for the general AT model. This algorithm (called the “direct
algorithm” in refs. 33 and 34) reduces to the standard SW algorithm®”
at the Ising and 4-state Potts subspaces. In refs. 33 and 34 we proposed
an embedding variant of their algorithm; it reduces to the standard SW
algorithm at the Ising plane, but not at the 4-state Potts line. However, we
gave numerical evidence that the two algorithms lie in the same dynamic
universality class. In particular, we found that at criticality

direct
rint, &
=1.516 +0.035 (4.3)

embedd
int, &

where 7;,, , denotes the integrated autocorrelation time of the energy (this
is roughly the slowest mode in SW-type dynamics). However, because the
embedding algorithm requires 1.9 times as much CPU time per iteration as
the direct algorithm (since in the AT formulation there are twice as many
spin variables as in the Potts formulation), our algorithm is about 25 %
less efficient than the standard SW algorithm.

Let us review briefly our embedding algorithm (more details can be
found in ref. 34). First, consider the Boltzmann weight of a given bond
{xyY, conditional on the {t} configuration (ie., the  spins are kept fixed):
it is

Wbond(ax’ o.y; T,, Ty) — e—z./(l +7,7) + [1 _e*ZJ(l +‘t_‘.‘ty)] 60"‘6)’ (44)

We can simulate this system of ¢ spins using a standard SW algorithm. The
effective nearest-neighbor coupling

JE=J1+1,7,) (4.5)

is no longer translation-invariant, but this does not matter. The key point
is that the effective coupling is always ferromagnetic. An exactly analogous
argument applies to the {r} spins when the {o} spins are held fixed.

The embedding algorithm for the 4-state Potts model has therefore
two parts:

Step 1: Update of {o} Spins. Given the {r} configuration
(which we hold fixed), we perform a standard SW iteration on the ¢ spins.
The probability p,, arising in the SW algorithm takes the value p,, =
1 ~exp[ —2J(1+7,7)]
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Step 2: Update of {1} Spins. Given the {g} configuration
(which we hold fixed), we perform a standard SW iteration on the 7 spins.
The probability p,, arising in the SW algorithm takes the value p., =
| —exp[ —2J(1+0,0,)].

One iteration of the embedding algorithm consists, by definition, of a
single application of Step 1 followed by a single application of Step 2.

4.2. Observables to Be Measured

Let us begin by defining some basic observables. The observables of
interest involving only the o spins are

M, = Z o, (4.6)
& = Z 0,0, 4.7)
{xpd
2 2
% = % |: Z o.erinx,/L + Z a.xezinxz/L :| (48)

where L is the linear size of the system (we always use periodic boundary
conditions) and (x,, x,) are the Cartesian coordinates of the point x. The
observable &£, can be also seen as the square of the Fourier transform of
o at the smallest allowed non-zero momenta [ie., (+2x/L,0) and
(0, £2#/L) for the square lattice]; it is normalized to be comparable to its
zero-momentum analogue .#2. We define analogous observables for the 7
spins and for the composite operator oz.

At the 4-state Potts line we have a symmetry under permutations of
(o, 1, a1). Thus, the natural choice of observables are those invariant under
this symmetry. We have measured the following observables:

M= (M M M) (49)
E=4(8,+6,+8,) (4.10)
F=3(F+F+ F) (4.11)

These observables coincide with the usual ones for the 4-state Potts model
up to some multiplicative constants. We then define the magnetic suscep-
tibility

X= 75 (A (4.12)
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the two-point correlation at the smallest nonzero momentum

F=— (%) (4.13)

~| =

the second-moment correlation length

— 12
the energy density (per bond)
E=—1 (&> (4.15)
2V
and the specific heat
Cu=gy (67— (85 (4.16)

In all these formulae, V= L? is the number of lattice sites and 2V is the
number of bonds (we have a square lattice with periodic boundary condi-
tions).

Finally, let us define the quantities associated with the Monte Carlo
dynamics. Given an observable ¢, we define the corresponding unnor-
malized autocorrelation function as

Cee(t)=<6,0,,,> —<0>* (4.17)
where all the expectation values ¢ -) are taken in equilibrium, and ¢ is the

“time” in units of MC steps. The associated normalized autocorrelation
function is

Ceol?t)

Lo 4.18
pd( C@(b(o) ( )

The integrated autocorrelation time for the observable ¢ is defined as

Tin, ¢ =3 Z Pec(t) (4.19)
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The integrated autocorrelation time controls the statistical error in MC
estimates of the mean {(@). Given a time series of measurements
{0, 0,,.., 0,} (in equilibrium), the sample mean

o

S |-

M=

g, (4.20)

(=1

constitutes an unbiased estimator of (@), and its variance (when

n>rim. (’) iS

var(0) == 21, « Coo(0) (4.21)

S| -

Thus, the variance of O is 2t,, , larger than it would be if the
measurements were uncorrelated. We can numerically obtain reliable
estimates of both 7, . and its error bar (from the autocorrelation func-
tion) by using a self-consistent truncation procedure (see Appendix C of
ref. 38). We have used a window of width 67;,, ., which is sufficient when-
ever the autocorrelation function decays roughly exponentially. This
almost-exponential decay has been confirmed numerically in ref. 34.

To compute the specific-heat error-bar we used the following proce-
dure: first we computed the mean energy (&), and then considered the
observable ¢ =(& — (&))? using the general procedure described in this
section.

4.3. Summary of the Simulations

We have simulated the 4-state Potts model on an L x L square lattice
with periodic boundary conditions, using the “embedding” algorithm
described in Section 4.1. We performed the simulation at 194 pairs (J, L).
The values of the coupling constant J range from 0.261 to the critical point
J.=4log 320.274653. The lattice sizes L range from 16 to 1024 at the
critical point, and from 32 to 512 off criticality. In all cases we have started
our simulations with a random configuration, and we have discarded the
first 10° iterations to allow the system to reach equilibrium. This discard
interval is more than sufficient: in the worst case (L=1024 at J,) it is
roughly equal to 1907, s (or 1607.,, s**) and in all other cases it is at
least 3007, 5.

The length of the runs ranges from 9x10° to 107 iterations. For
L =512 this run length corresponds to 10* times 7y, »; for L =256 it is at
least 2 x 10%;,, ,; for L =128, at least 3 x 10*r;,, 5; and for L =64, at least
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Table 1. Monte Carlo Data for the 4-State Potts Model at Criticality”

L MCS X Cll 5‘2) Tim. &
16 09 141.41 4 0.29 2.513+£0.013 15.758 + 0.056 12.86 £ 0.24
32 1.9 474.234+0.94 4,170 £ 0.020 31.681 +£0.100 23.134+0.40
64 99 1587.70 £ 1.90 6.971 £ 0.020 63.704 £ 0.115 41.58 +0.42
128 69 5321.74 4 10.55 11.730 £ 0.055 128.153 +0.368 7113+ 1.26

256 44 17764.70 1 60.96 19.936 +£0.158 256.291 +£1.243 143.00 +£3.99
512 29 59876.54 +334.67  33.969 £ 0.467 519.102 £ 4.078 25283 £ 11.57
1024 08 19687243 +3137.60 60.135+2.091 1020.767 +21.680  534.44 + 67.68

“ For each lattice size L we show the number of measurements (MCS) in units of 10°, the
susceptibility y, the specific heat C,;, the second-moment correlation length ¢, and the
integrated autocorrelation time for the energy 7, 4. The quoted error bars correspond to
one standard deviation (i.e., confidence level ~68%).

4 x 10*7;,, 5. These run lengths are more than sufficient to get a fairly good
determination of the dynamic quantities, and to get high-precision data for
the static quantities. Unfortunately, for L =1024 we were able to achieve
only 15007, ., as the autocorrelation time is quite large.*¥

The data at the critical point were employed already in our previous
work®* 3 to extract the dynamic critical behavior of our SW-type algo-
rithm, Here we have improved the statistics at L = 64, 128, 256; the revised
data at criticality are displayed in Table 1. The whole set of data, including
the 187 runs off criticality, can be obtained from the authors.

The CPU time required by our program is approximately 10Lus/
iteration on an IBM RS-6000/370. The total CPU time used in this project
was approximately 8.5 years on this machine. The simulations were mainly
run on the CAPC cluster at New York University, the IBM SP2 cluster at
the Cornell Theory Center, and the DEC Alpha cluster at the Pittsburgh
Supercomputing Center.

5. NUMERICAL RESULTS

5.1. Finite-Size Scaling at Criticality

In this subsection we are going to test the FSS predictions (3.9)/
(3.23)/(3.24) for the 4-state Potts model a¢ criticality. In refs. 33 and 34 we
presented some preliminary results. However, we have now made signifi-
cant extensions of these runs, in some cases doubling the statistics. More
importantly, we now have a better theoretical knowledge of the FSS
behavior of this model, which includes both multiplicative and additive
logarithmic corrections.
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For each quantity @, we shall carry out fits to several different Ansitze
using the standard weighted least-squares method. As a precaution against
corrections to scaling, we impose a lower cutoff L > L ;, on the data points
admitted in the fit, and we study systematically the effects of varying L_;,
on both the estimated parameters and the y°. In general, our preferred fit
corresponds to the smallest L, for which the goodness of fit is reasonable
(e.g., the confidence level® is = 10-20%) and for which subsequent increases
in L, do not cause the y* to drop vastly more than one unit per degree of
freedom.

5.1.1. Second-Moment Correlation Length. The quantity
EP/L is expected to approach a constant x* as L — oo, with additive
O(1/log L) corrections {3.9). The constant x* can be in principle computed
via conformal field theory, but to our knowledge this calculation has not
yet been done.

A fit of this ratio to a constant is reasonably good only for L, =128:

2)
%: * =1.0022 +0.0023 (5.1)

with y?=2.38 (3 DF, level = 50%). However, if we take into account the
1/log L corrections we get a good fit already for L,,;,=16:

2) 0.1077 £ 0.0239
%=(1.0221i0.0061)—TL3 (5.2)

with y* =2.32 (5 DF, level = 80%). On the other hand, an equally good fit
can be obtained using a power-law correction L~ with 0 < 4 $0.5; this is
to be expected, as a logarithm can be well mimicked by a small power. We
can conclude conservatively that

x*=1.02 +0.03 (5.3)

5.1.2. Susceptibility. The expected behavior of the critical
susceptibility at finite L is given by (3.24). Thus, in addition to the
standard L' term with y/v=7/4, we have a multiplicative logarithmic
correction (log L)', and also additive logarithmic corrections of orders
log log L/log L and 1/log L. All these features make the accurate numerical
estimation of the exponent y/v quite difficult.

% “Confidence level” is the probability that x> would exceed the observed value, assuming
that the underlying statistical model is correct. An unusually low confidence level (e.g., less
than 5%) thus suggests that the underlying statistical model is incorrect—the most likely
cause of which would be corrections to scaling.
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If we fit the susceptibility to the naive power law AL”, we get a
reasonably good fit for L, = 16:

=1.744 1+ 0.001 (54)

< |~

with y? =221 (5 DF, level = 82 %). The difference from the exact result 1.75
is not large, but it is six standard deviations and thus strongly statistically
significant. The fact that the estimate (5.4) estimate is smaller than the exact
value is consistent with the existence of a multiplicative logarithmic correc-
tion raised to a negative power. However, without the theoretical knowledge
of a multiplicative logarithmic correction, we could equally well conclude
that this small discrepancy is due to additive corrections to scaling. >4

If we try to fit the quantity y/L”* to an arbitrary power of log L [i.e.,
x/L"* = A(log L)”] we obtain a reasonable fit already for L, = 16:

p = —0.0236 £+ 0.0040 (5.5)

with y*>=3.64 (5 DF, level =60%). This result differs drastically from the
theoretical prediction p= —1/8 = —0.125. Alternatively, we can try to fit
z(log L)'® to a power-law AL”"; the result for L, = 128 is

min

=1.765 £ 0.003 (5.6)

< |I=

with y?> = 1.83 (2 DF, level = 40%). Once again this differs by five standard
deviations from the exact value 1.75.

Looking at the FSS prediction (3.24), it is plausible to think that the
reason why (5.5)/(5.6) differ so radically from the leading-order theoretical
prediction L7*(log L)~ '® are the large corrections to scaling. To test this
idea, we have fitted y/[ L"*(log L)~'"*] to 4 + B log log L/log L. The fit is
reasonable for L = 64:

loglog L

X
==(1.673 +0.033) — (1.056 + 0.098) 0
ogL

L'*(log L)~" G7

with y>=2.76 (3 DF, level =43%). However, the ratio B/4~ —0.63 is
quite different from the expected value a’/(8a2) = —1/16 = —0.0625.

Furthermore, if we try fitting y/[ L*(log L) "'/*] to A + Bflog L, we
obtain an equally good (even slightly better) fit: with the same L, =64,
we get

min

X 0.600 +0.055

A — (1454 +0013) — .
T iog 1)~ (1.454 +0.013) gL (5.8)
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with y2=1.94 (3 DF, level =59%). Clearly, at these modest values of L, it
is virtually impossible to disentangle numerically the log log L/log L and
1/log L contributions, both of which are predicted theoretically to be pre-
sent. Indeed, the small value ( —1/16) of the universal log log L/log L coef-
ficient makes it undetectable in the presence of the much larger (~ —0.4)
nonuniversal 1/log L coefficient. To distinguish these two contributions, we
would need to reach at least loglog L~ 5, i.e. L~ 10%! Note, finally, the
large discrepancy between the estimates (5.7) and (5.8) of the leading
amplitude A: it is virtually impossible to estimate the correct limiting value
in the presence of such strong corrections.

5.1.3. Specific Heat. The FSS behavior of the specific heat at
criticality is given by (3.23); it is of the same L”(log L) ¢ form as the
susceptibility, but with a much larger logarithmic exponent ¢g. This makes
it extremely difficult to estimate accurately the leading exponent a/v =1, as
was found already in ref. 34.

A naive power-law fit to AL*" gives a reasonably good result for
L...=128:

% —0.770 +0.008 (5.9)

with y?>=1.15 (2 DF, level =57%). This estimate is far below the exact
value; this deviation is roughly consistent with the predicted multiplicative
logarithmic correction in both sign and magnitude: a behavior (log L) 3
can be well mimicked over the interval 128 < L <1024 by a power L~ %%,

We can try to estimate the power of the logarithmic term by fitting
Cu/L to Alog? L. The result is good for L, =128:

p=-—125840.044 (5.10)
with y*>=0.66 (2 DF, level =72%). We obtain a much better result than
for the susceptibility, but (5.10) is still six standard deviations away from

the predicted value —1.5. We can also try to compute a/v by fitting
C, log*?L to the power-law AL*", The result for L, =128 is

%= 1.044 + 0.008 (5.11)

with y?2=0.97 (2 DF, level =62%). This is still five standard deviations
away from the exact value a/v=1.
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Finally, we have fitted the function C,/[ L(log L) ] to the Ansatz
A+ Bloglog L/log L. The fit is good for L, ;, = 128:

loglog L

12
log L (5.12)

Cu
LlogL) 7 (1.607 +0.113) — (1.926 + 0.354)

with ¥?>=0.72 (2 DF, level =70%). Again the ratio B/A~ —1.2 is rather
different from the expected universal value 3a’/(2a®) = —3/4 = —0.75 from
(3.23).

If, instead, we try to fit C,,;/[ L(log L) ~**] to the Ansatz 4 + B/log L,
the fit is reasonable already for L ;, = 64:

Cy 1.526 + 0.096
Tliog 7= (1291£0022) - ===

(5.13)

with y>=1.22 (3 DF, level = 75%). Again, we are unable to disentangle the
two types of corrections.

5.1.4. The Combination x/C}/"2. From (3.23)/(3.24) we see that
the combination y/C}'* does not show any multiplicative logarithmic
correction, nor any additive correction of order log log L/log L. Rather,

1

#(O, 0, \I/,L—‘)~L5/3{1+0<Eg—L)] (5.14)
H

It is therefore of some interest to see whether the fits for this particular
combination are at all “cleaner” than those for y and C,, separately. To
compute the error bars on y/C}'?, we took into account the cross-correla-
tions between the specific heat and the susceptibility. We can thus trust y*
value in these the fits.

To test the prediction (5.14), we first tried a power-law Ansatz AL’
The fit is already good for L, = 16:

p=1682+0.001 (5.15)

with ¥*=3.60 (5 DF, level =61%). This exponent is 15 standard devia-
tions away from the expected value 5/3 = 1.666667. This discrepancy might
be due to a rather strong correction to scaling.

If we assume that the corrections to scaling are of order 1/log L, the
fit is reasonable for L, = 64:

Cy'" . .
£ 45 =(1.422¢0.013)~9£190§¥ (5.16)
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with ¥?2=223 (3 DF, level=53%). However, a correction of order
log log L/log L gives an even better fit: already with L_;, = 32 we have
Xc;ll/lz
L5/3

loglog L
log L

=(1.588 +0.026) —(0.785 £ 0.078) (5.17)

with y*> =237 (4 DF, level =67%). Again, we find it impossible to dis-
tinguish clearly between these two corrections to scaling, even when we
know on theoretical grounds that only 1/log L corrections are present.

5.2. Finite-Size Scaling off Criticality

In this section we are going to test the FSS predictions for the 4-state
Potts model off criticality. In particular, from (3.11) we see that

, 0,9, L 1
A i nlog L), 0.0, )+ 017 ) (528

The first argument on the right-hand side is equal (for large L) to

PN L [ a loglog L 1
i sllon Li) = o 1+ e 2 4 0 ()| 519

This means that if we plot ¢'®/L as a function of §L*? log ~**L, the points
will collapse onto a single curve. Of course, the expected deviations of
order log log L/log L may make this collapse less than perfect.’

Analogously, from (3.21)(3.22) we obtain similar predictions for the
specific heat and the susceptibility:

Cul,0, 4, L") o ¢L*? > log log L
L(log L)~ ** =Fe, <(log Ly 0.0.1)+0 ( log L > (5:20)

x(, 0,4y, L°") ( gL > (log log L>
L7/4(10g L)41/8_F1 (log L)3/4’ 0’ 0’ 1)+0 lOgL (521)

where F(, and F, are certain derivatives of the free energy fi,.. Again,
plotting the Lh.s. of (5.20) or (5.21) versus ¢L**(log L)~ ** will collapse
the corresponding data onto a single curve, modulo corrections
O(loglog L/log L).

7 One could also plot £'2/L as a function of $L*(log L)~ ¥* [ 1 + (a'/u*) log log L/log L], and
get only 1/log L corrections. However, we have seen in the preceding subsection that it is
very hard to disentangle these two effects at criticality. Thus, we expect no gain in intro-
ducing explicitly the log log L/log L correction.
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The effect of the marginal scaling field y on the FSS equations is thus
threefold: 1) The specific heat and the susceptibility have a multiplicative
logarithmic correction. 2) The scaled-temperature variable appearing on
the r.hs. of the FSS equations is not merely L'/'(J—J.), but has a multi-
plicative logarithmic correction (log L) ~¥* [ the same for all observables].
3) The corrections to finite-size scaling are not O(L~“), but rather
O(log log L/log L), which makes the numerical analysis much harder.

The naive approach to off-criticality FSS—neglecting all multiplicative
logarithms—would be to plot ¢?/L, Cy/L, and y/L”* versus L**(J~J,).
These plots are displayed in Fig. 1. The results are quite poor; there is no
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heat C, the susceptibility x, and the second-moment correlation length &2, Note that the
abscissa LYX(J—J ), where J.=1log 3 =0.274653..., also lacks the predicted multiplicative
logarithms. Symbols denote the different lattice sizes: L=32 (+), L=64 ( x ), L=128 (1),
L=256 (<), and L=3512 (O).
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data-collapse for the specific heat; and for the susceptibility and the
correlation length the data collapse only close to J,.

A slightly less naive approach is to incorporate the predicted multi-
plicative logarithms for the specific heat and the susceptibility, while still
ignoring the multiplicative logarithmic corrections to the abscissa
L**(J—J,). But if we do this, we get even worse plots (see Fig. 2), with the
exception of the specific heat near J, (where the rescaling of the abscissa
makes no difference anyway, and the multiplicative logarithm in C,, helps
a lot). The slight deterioration in the susceptibility plot near J, is a reflec-
tion of our inability (5.5) to verify the correct power of log L.
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However, when we try to verify the correct FSS equations (5.18)~(5.21),
the result is very different (see Fig. 3). The data for the specific heat exhibit
a good collapse away from J,.. Close to the critical point we see large
deviations, presumably due to the log log L/log L and 1/log L corrections.
For the susceptibility, we get a good (though not perfect) data-collapse
along the entire curve; the data-collapse is even better for the correlation
length. We conclude that the data are in reasonable agreement with the
predicted multiplicative logarithms, if we make allowance for the additive
logarithmic corrections to scaling,
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Remark. In most situations, FSS plots of this type are difficult to
obtain because of the uncertainties in the determination of J,: a small error
on J, ruins the data-collapse. Fortunately, in our case we do know the exact
value of J,. This fact allows us to test the FSS predictions very accurately.

Another way to present FSS data is to avoid using the “bare” variable
J—J,, and to use instead the physical observable ¢®(L)/L. From (3.29)-
(3.30) we conclude that plotting C,,/[ L(log L) ~*?] or /[ L"*(log L)~ '*]
versus £P/L will provide a single curve for each observable, modulo
corrections of order loglog L/log L. In Fig. 4 we display the FSS plots of
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these two observables, when we neglect the multiplicative logarithmic
corrections (left column) and with the full leading terms (right column).
Including the multiplicative logarithmic corrections makes a big improve-
ment, especially for the specific heat. Again we see large corrections to
scaling near the critical point (namely, at &¥/L ~ x* ~1.02), in agreement

with the behavior found in Section 5.1.

The main drawback of this type of plot is that data with small &?/L
are artificially compressed. One way to overcome this difficulty is to replace
L by ¢? in the y-axis. That is, we can plot C,/[¢P(log ¢®)~*?] and
2/[EP 7 (log )~ 1] versus EP/L (see Fig. 5). We emphasize that these
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plots are identical to those in Fig. 4, except that the scale of the y-axis is
changed in a way depending on x = &'?/L. We see that the data-collapse at
small ¢'?/L is not in fact as good as it had appeared in Fig. 4: in reality,
it is mediocre for the susceptibility and quite poor for the specific heat.
Nevertheless, there is a clear improvement in both cases when we include
the predicted multiplicative logarithmic correction,

5.3. Extrapolation Techniques

We have also considered how well the extrapolation scheme introduced
in ref. 19 works in the presence of logarithmic corrections. This method
makes use of the following FSS equation for an arbitrary long-distance
observable ¢:

o(J,2L) E(J, L) o o
0L (< i3 >+O(é , L™) (5.22)
where F, is an unknown scaling function and w is a correction-to-scaling
exponent. (Here we have chosen a size-scaling factor s =2; a similar equa-
tion holds, of course, for any s.)

Let us first check the analogous equations for our case. To simplify the
notation, we will write only two arguments for the observables: O(J, L) =

O(¢, h=0,y, L™"). From (3.17) we conclude that

QI2L) 5 (G 5 (L))
UL —A¢< I3 >+B,5< 13 >lOgL+”' (5.23)

where A and B, are universal (albeit unknown) scaling functions. Using
the relation (3.18) we arrive at

dLﬂJ_A<ﬂLL»+R(§i£5 1 (5.24)

&J, L) T\ L L JlogL" =~

where 4. and B, are again universal. Thus, we get the same equation as
(5.22), but the corrections to scaling are much larger ( ~ 1/log L).

The same type of equation can be derived for the specific heat and the
susceptibility, using (3.29)—(3.30): although there are corrections of order
log log L/log L, these cancel out in forming the ratio between lattice sizes
L and 2L. Notice that the nonuniversal k. /log L contribution also cancels
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out in the ratio O(J, 2L}/0(J, L). This means that the leading correction to
scaling is universal. That is, we have

o(J,2L) ¢(J, L) S(J, L)\ 1
oDy = A (——L >+B(,< - >]0gL+--- (5.25)

where both scaling functions 4, and B, are universal.

The 1/log L corrections in (5.25) make a numerical determination of
the finite-size-scaling functions 4, very difficult. Unfortunately, these func-
tions are the basic objects needed to extrapolate from finite L to the
infinite-volume limit."">’ Thus, a naive application of the method of ref. 19
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is not expected to work well. Figure 6 shows the plots of O(J, 2L)/0(J, L)
versus ¢?Y/L for the specific heat, the susceptibility and the second-moment
correlation length. The data collapse is notably inferior to that observed in
most other models.'” Note also that the specific-heat curve is very far
from its correct value 2" = 2 at the critical point ¢‘?/L = x* x 1.02; rather,
it takes the value 2(*Vr =2 =070 %1 71, This is another indication of the
very strong corrections to scaling.

6. DYNAMIC CRITICAL BEHAVIOR OF THE
SWENDSEN-WANG-TYPE ALGORITHM

In this section we shall analyze briefly the dynamic critical behavior of
our Swendsen—-Wang-type algorithm for the two-dimensional 4-state Potts
model. Recall that we have used the “embedding” variant of the SW-type
algorithm for the Ashkin-Teller model.**** This algorithm does not coin-
cide with the standard Swendsen-Wang®®”’ algorithm for the 4-state Potts
model, but it is expected heuristically (and confirmed numerically®*® at
criticality) to lie in the same dynamic universality class. We therefore
expect the dynamic critical exponents to be identical for the two algo-
rithms; and we also expect the dynamic finite-size-scaling functions to be
identical modulo a multiplicative factor.

6.1. Dynamic Finite-size Scaling at Criticality

We first fit the integrated autocorrelation time for the energy, 7, ,,
to a pure power law 7, 5= AL ¢ We obtain a good fit for L, =32:

Zine s =0.876 +£0.011 (6.1)

with y?=2.54 (4 DF, level =64%). However, this cannot be the true
asymptotic behavior, because the Li-Sokal bound* 3% guarantees that
Tim, & = const x Cy,, and we know from (3.23) that the specific heat diverges
at criticality like L(log L) ~*%® Rather, this apparent exponent z;,, » <1 is
probably an effect of multiplicative logarithmic corrections (with a negative
exponent), just as it is for the specific heat.

¥ The Li-Sokal bound has been proven for the original Swendsen-Wang algorithm'*® and
more generally for the direct form of the Ashkin-Teller SW algorithm.**' But the embedding
form of the AT algorithm is believed (and observed numerically®) to be in the same
dynamic universality class as the direct algorithm. So the bound should apply for it as well.
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In refs. 34 and 40 we showed that there are only two likely behaviors
for the autocorrelation time of the Swendsen—Wang algorithm for the 2D
Potts models:

AL? with p small
Tint, 8 =

6.2
A+Blog L (62)

With the available statistics it is very hard to distinguish between these two
scenarios. If we fit the quantity 7, »/[ L(log L) ~*?] to a pure power law
AL?, we obtain a reasonable fit for L, =128:

p=01534+0.028 (6.3)

with y>=1.30 (2 DF, level =52%). On the other hand, if we fit the same
quantity to the logarithmic Ansatz 4 + B log L, the fit is very good already
for L ;,=16:

L(T‘;“‘[‘:‘;’—_T/z=(0.l9710.173)+(1.278i0.044)logL (6.4)
with y%?=1.53 (5 DF, level = 77%). Thus, our MC data supports slightly
better the logarithmic scenario compared to the power-law scenario.

One can also study directly the ratio 1, ,/Cy, and fit the results to
the Ansitze (6.2). Unfortunately, we do not know the correct error bar on
this ratio, as we do not know the covariance between the estimator of the
specific heat and the estimator of 7, ,. Instead, we shall use the upper
bound on the error bar provided by the triangle inequality. Our error bars
are thus overestimated—by how much we do not know—and, conse-
quently, the x? values of the fits are expected to be artificially small. We
can, however, compare the relative y? values for the two Ansitze. (See
ref. 34 for a complete discussion concerning these points.) If we try to fit
Tin, #/Cr tO @ pure power law AL?, we get a good result for L, ;, = 16:

p=0119+0011 (6.5)

with y? = 1.06 (5 DF, level = 96 % ). With the logarithmic Ansatz 4 + Blog L,
the fit is less good: for the same L., we obtain y*>=199 (5DF,
level =85%). Thus, for L, =16 the power-law fit gives a x* a factor of
two better than the logarithmic fit. However, for L, = 32, the two fits give
more nearly equal values of ¥*: 0.98 and 1.27, respectively.

6.2. Dynamic Finite-Size Scaling off Criticality

The FSS behavior of the dynamic observables off criticality is expected
to be similar to that discussed previously for the static observables. That is,
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we expect multiplicative logarithmic corrections, as well as additive
logarithmic corrections to scaling. In this section we have considered the
two scenarios discussed in the previous subsection, with the aim of dis-
tinguishing between them.

First, we have made the FSS plots analogous to those of Figs. 1 and 2.
That is, we have plotted the leading behavior—rt,, /L3¢ or 7., ./
[L(log L) ~*? (1 +6.501 log L)]—versus L**(J — J ) (left column in Fig. 7).
In both cases, we obtain terrible fits. However, the situation improves
dramatically when we consider the correct abscissa L¥?(log L) ~**(J—J )
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LY S — 1) (left column) and (J—J,) L¥Y(log L) =¥ (right column). We show the two most
likely scenarios: ti, g~ L%.¢ with z;, ,=0876+0011 (upper row), and 71y, ¢~
L(log L)=*2 (1 +6.501 log L) {lower row). Symbols denote the different lattice sizes: L =32
(+), L=64 (x), L=128 (O), L=256 (<), and L=512 (C).
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(right column in Fig. 7). Unfortunately, from these plots corresponding to
the two most likely scenarios, it is impossible to tell which one is more likely.

Alternatively, we can plot the same quantities as functions of the
physical observable &?(L)/L (left column in Fig. 8). Again, the plots are
very similar, and there is no objective reason to prefer one over the other.
The corrections to scaling for small ¢*/L appear to be quite small; they
grow slightly in size as we approach larger values of ¢?/L. To check that
this behavior is not an artifact of the compression of the vertical axis at

Autocorrelation time 7,5 z = 0.876 Autocorrelation time 7,z z = 0.876

LR B

1.0 — §i —
e §
2 L E
—
3 ;
N
& ¥
0.5 |- —
¢
- &
ool e bbb 1o . ’
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6
£B(L)/L £B(L)/L

Autocorrelation time 7,5 Log Ansatz

<
1)

o
e

Times/[L (log L)™3(1 + 6.501 log L)]
T/ [€® (log £®)71/2)

o

o
’-‘
L

0.6 0.8 1.0 0.0 0.2 6 0.8 1.0

0.4 & 0.4 0.
£3(L)/L £A(L)/L

Fig. 8. Finite-size scaling plots for the integrated autocorrelation time ;,_, as a function of the
physical observable ¢'(L)/L. The upper row shows the Ansatz 1, g~ Lin s with z, o=
0.876 1 0.011, while the lower row shows the scenario 7y, 5 ~ L(log L) ~* (1 + 6.501 log L). In
the left column we show the usual FSS plots; in the right column we have substituted the variable
L in the y-axis denominator by £'? in order to amplify the region with smaller #?/L. Symbols
denote the different lattice sizes: L=32 (+), L=64 (x), L=128 (O), L=256 (<), and
L=512(0O).
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small £?/L, we have tried replacing L by ¢® in the y-axis denominators
(right column in Fig. 8). We emphasize that these plots are identical to
those in the left column, except that the scale of the y-axis is changed in
a way depending on x = ¢?/L. Contrary to what we observed for the static
observables, the corrections to scaling for small ¢‘?/L are not so large
compared to the error bars, except for a few points at very small ¢'? in the
logarithmic Ansatz (where the neglect of the additive constant A in
A+ Blog & obviously plays a role). Note, finally, that the scaling func-
tion tends to a nonzero constant when ¢®/L — 0, as expected on general
theoretical grounds.

APPENDIX A. CALCULATION OF THE COEFFICIENT a’

In this appendix we derive the value (2.10) of the cubic coefficient a’
in the RG flow for the 4-state Potts model. The method is identical to that
of Cardy et al.,'® carried to one higher order: namely, we study the renor-
malization-group flow for the g-state dilute Potts model in a neighborhood
of the multicritical point ¢ =4, ¢ =2 = =0; we then match this flow with
the exactly known®® values of the critical exponents as a function of g,
expanded now through second order in (4 —gq)'.

A.1. Exactly Known Values of Critical Exponents

The leading thermal exponent y . ,, the next-to-leading thermal expo-
nent yr,, the leading magnetic exponent y, , and the next-to-leading
magnetic exponent y, , of the g-state dilute Potts model are known
exactly, both for the ordinary critical point (arising in the pure Potts
model) and for the tricritical point (arising in the dilute model). Their
values are:

yra= 3213; (A1)
ym=§% (A2)
Vi =E‘%i;i2 (A3)
AL 4 (A4)

4(2 + x)
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where
X = g arccos <ﬁ> (A.S5)
n 2

with —1 < x <0 corresponding to the ordinary critical points and 0 < x <1
corresponding to the tricritical points. The value of y, , for the ordinary
critical point was conjectured by den Nijs;® this conjecture was extended
to the tricritical branch of the dilute Potts model by Nienhuis et al.® It has
now been derived by Coulomb-gas methods'*"*? for both the critical®*
and tricritical®® branches. The expression (A.2) for the next-to-leading
thermal exponent was first conjectured by Burkhardt;'*® it was derived
using Coulomb-gas methods by Nienhuis.?® Finally, the expressions
(A.3)/(A4) for the leading and next-to-leading magnetic exponents were
first conjectured by Nienhuis et al”’ and Pearson;® their validity was
established by den Nijs**’ using the Coulomb-gas approach. In the
Coulomb-gas formulation, all these formulae are naturally parametrized in
terms of the variable 1 = 1/(2 + x), which is proportional to the temperature
of the associated Gaussian model; the thermal (resp. magnetic) exponents
are linear (resp. quadratic) polynomials in ¢.

These exponents can also be understood in terms of conformal field
theory.*” Let us consider a conformal field theory (CFT) with central
charge ¢ < 1, which we parametrize as

6
C=1—m(m—+1) (A6)

with 0 <m < o0 (not necessarily integer). Then the conformal weight of a
primary field ¢, , (r, s integer) is given by the Kac formula®

_[m+1)r—ms]*—1
h dm(m+1)

4

r,s

(A7)

The corresponding critical exponent is y, ,=2—24, .. If m is a rational
(resp. irrational) number, then the corresponding CFT has a finite (resp.
infinite) operator algebra. If m is an integer =2, then the corresponding
QFT is unitary, at least as long as we restrict attention to the fields ¢, ,
satisfying 1 <s<r<m— 1.

 We follow the notation of refs. 46 and 47. In ref. 48 the indices r and s are interchanged with
respect to this notation.
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The critical g-state Potts model can be represented*® 4 by a CFT
with central charge

(A8)

where the parameter x is given by (A.5) with —1<x<0.'" From
(A.6)/(A.8) we see that

x=-=2/(m+1) (A9)
and the Kac formula (A.7) reduces to

_[2(r—s)+sx)?—x?

4, 82+ )

(A.10)

The unitary theories m =2, 3, 4, 5,... correspond to ¢ =1, 2, 4 cos*(n/5), 3,....
The energy operator ¢ is identified with ¢, ,. This means that y, , =
2—24,,, and we obtain the result (A.1). From the conformal algebra
e~y ¢, ~1+4¢; |, and we identify the operator ¢, | as the one giving
the next-to-leading thermal corrections. This implies that y, ,=2—24, |,
and we get (A.2). Finally, the spin operator s is identified with
B+ 112, om+ 112 (OF alternatively @, . 1,21 n+1)2)- Therefore, y, =
2=240, vy me 2 =2—=240  1y2.(m+12—1> and this yields (A.3). The
second magnetic exponent y, , can be derived from the conformal weight
of the operator @, iy24 1 m+1y2 (OF alternatively @... 15 2 (mi1)2)
More generally, we can obtain the full spectrum of thermal exponents

4—n)+(n+2)x

Yra=2—24,,1.1= T x (A.11)
and magnetic exponents
Yun=2=2480, vypsen-1.m+s12=2=240 s 120 m+ 12
=[16—(2n—1)2]+8x+x2 (A12)

42+ x)

However, this identification of the magnetic operators makes sense only
when m is an odd integer 1, 3, 5, 7,..., corresponding to ¢ =0, 2, 3,2 + \/5,

' Qur parameter x is equal to minus the parameter y appearing in refs. 46 and 48.
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The tricritical Potts model can be obtained by the analytic continua-
tion of the preceding formulae to 0 < x <1."*® The nonformal charge con-
tinues to be given by (A.8), but we must now identify

x=2/m (A.13)
The Kac formula for the tricritical models is thus given by

C[2r—s)+rx]?—x?
4, = 82+ %) (A.14)

The energy operator is now identified with the operator ¢, ,, which
reproduces (A.1). More generally, the thermal exponents are given by the
operators ¢, |, ,, while the magnetic exponents come from the operators
B2, mp2y 4 (OF €quivalently from ¢@,,» (2,41 .)- Notice that the magnetic
operators make sense only when m is an even integer 2,4, 6, 8,..., corre-
sponding to the same series ¢=0,2,3,2+ \/5,, as in the critical case.

A.2. Renormalization-Group Flow for the g-State
Dilute Potts Model

Following Cardy et al. [ref. 3, Section II], we study the RG flow for
the g-state dilute Potts model in a neighborhood of the multicritical point
e=qg—4=0, ¢=h=y=0. Cardy et al. showed that the RG equations can
be brought by a series of smooth changes of variable into the form

dy

E=a(l//2+e)+0(f3, €f, €%) (A.15a)
d¢ 3 2
E=(}’T+b|//)¢+0(f , €f, €%) (A.15b)
dh , ,
E=(yﬁ+ct//)h+0(f , €f, €°) (A.15¢)

where a, b, ¢, yr, ¥, are universal parameters. Here f stands collectively for
the fields v, ¢ and A; and we consider € to be of order ? because that is
its magnitude at the fixed points y° = —e+ O((—€)*?).

By a similar argument one can treat the terms of cubic order in the
fields; as before, the v equation decouples from the others, and becomes

Y+ o) +aY + ey + O, el €) (A.16)
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For € <0 there are fixed points at

" ’

(=) +0((—6)") (A17)
a

W= +(—e)2+2

with eigenvalues
yi=22a(—€)'?+2d'(—€)+ O((—€)*?) (A.18)

Here the + sign corresponds to the tricritical point, with a relevant second
thermal exponent y , > 0 controlling the tricritical-to-critical crossover; and
the — sign corresponds to the ordinary critical point, with an irrelevant
second thermal exponent y_ <0 controlling the leading corrections to
scaling. Matching (A.18) to the known second thermal exponent (A.2)/(A.5),
we find

a=— (A.19)

a=—-—7 (A.20)

This reasoning gives an independent (and consistent!) derivation of the
quadratic coefficient g, which was derived previously by Nauenberg and
Scalapino'>* by matching (A.15a, b) to Baxter’s''’ exact result for the
latent heat in the pure Potts model for ¢>4; and it gives the promised
derivation of a'.

Remark. This reasoning does not fix the value of ¢”. Indeed, by a
smooth change of variable y =1’ + a,y'?, the coefficient a” can be set to
any desired value: for example, a” =0 or a” =4’. The latter choice has the
property of placing the fixed points at  , = +(—e€)"? with no correction
O(—e¢). This approach can also be extended to higher order: e.g. starting
from the fourth-order equation

%=a(lﬁ2+e) +dy +a"ey

+a Dyt +aVep? 4+ a' Ve’ + Oy, e, €2y, €7) (A21)

we can make a smooth change of variable = (1 + o, €) ¢’ + a,¢'? + o "?
and fix three of the four coefficients a”, a*’, a**', a**’ to any desired values.
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For example, if we choose to fix a” =d’, a'® = a'?, a®®’ = 0 we then have the
normal form

W _ 2+ &) ) + O, e, €y, €) (A22)

with F independent of €. Alternatively, we can choose a” =a', a® =0,
a¥ =a' to yield the normal form

dy

Vi (> +e)[dol€) + 41(€) Y]+ O’ €’ €', ') (A23)

with A4,, 4, independent of . It would be interesting to know whether
either (or both) of these normal forms can be established to all orders in
¥ and €. If so, the functions F(y), A,(€) and A,(¢) would then be com-
pletely determined from the known exponent (A.2)/(A.5).
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